Stochastic Processes

Course Name: Stochastic Processes

Instructor: Dr. Afrooz Haghbin

Level: Graduate

Course Meeting Times: 3 Hours / Week

Prerequisites: Probability and Statistics in Engineering.

 

Course Description


   In this course, we introduce the stochastic processes and the mathematical principles required to discuss them are presented.

Course Description (Farsi)

 

Course Syllabus


    1- A Review on Probability and Statistics

    2- Fundamentals of Stochastic Processes

    3- Power Spectrum of Stochastic Processes

    4- Orthogonal Expansion of Stochastic processes

    5- Band-limited Stochastic Processes

    6- Discrete Time Stochastic Processes

    7- Estimation (if time permit)

 

Course Evaluation


    Midterm Exam                 40%

    Final Exam                      45%

    Homework                      15%

 

References


[1] A. Papoulis, S. U. Pillai, Probability, Random Variables and Stochastic Processes. 4th Edition, McGraw Hill, 2002.

[2] S. M. Ross, Introduction to Probability Models. 4th Edition, Academic Press, 2003.

[3] S. M. Ross, Stochastic processes. Wiley, New York, 1996.

[4] W.B. Davenport, Probability and Random Processes. McGraw Hill, 1970.

 


 

  • 97-98 (Fall)

Introduction

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture 7

Lecture 8

 


 

 

  • 96-97 (Fall)

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Lecture 15

Lecture 16

Lecture 17

Lecture 18

Lecture 19

Lecture 20

Lecture 21


  • 95- 96 (Fall)

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Sample Final Exam

 


  • 94-95 (Spring)

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Lecture 10

Lecture 11

Lecture 12

Lecture 13

 


  • 94-95 (Fall)

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Lecture 15

Lecture 16

 


  • 93-94 (Spring)

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Lecture 10

Lecture 11

Lecture 12

 


Homeworks


    1- Homework No. 1. Download

    2- Homework No. 2. Download

    3- Homework No. 3. As defined in class

    4- Homework No. 4. Download

    5- Homework No. 5. As defined in class

    6- Homework No. 6. As defined in class

    7- Homework No. 7. Download

    8- Homework No. 8. Download

    9- Homework No. 9. As defined in class

 

    Sample Midterm Download