
Digital Communications

Assignment #2

Discrete Channel Capacity

Additive noise channel. Find the channel capacity of the following discrete memoryless channel:

where $\Pr\{Z=0\} = \Pr\{Z=a\} = \frac{1}{2}$. The alphabet for x is $\mathbf{X} = \{0, 1\}$. Assume that Z is independent of X. Observe that the channel capacity depends on the value of a.

Channel capacity. Consider the discrete memoryless channel $Y = X + Z \pmod{11}$, where

$$Z = \begin{pmatrix} 1, & 2, & 3 \\ \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3} \end{pmatrix}$$

and $X \in \{0, 1, ..., 10\}$. Assume that Z is independent of X.

- (a) Find the capacity.
- **(b)** What is the maximizing $p^*(x)$?

3.

Z-channel. The *Z*-channel has binary input and output alphabets and transition probabilities p(y|x) given by the following matrix:

$$Q = \begin{bmatrix} 1 & 0 \\ 1/2 & 1/2 \end{bmatrix} \qquad x, y \in \{0, 1\}$$

Find the capacity of the Z-channel and the maximizing input probability distribution.