Digital Communications

Assignment #1

Concepts of Information Theory

Entropy of functions of a random variable. Let *X* be a discrete random variable. Show that the entropy of a function of *X* is less than or equal to the entropy of *X* by justifying the following steps:

$$H(X, g(X)) \stackrel{\text{(a)}}{=} H(X) + H(g(X) \mid X)$$

$$\stackrel{\text{(b)}}{=} H(X),$$

$$H(X, g(X)) \stackrel{\text{(c)}}{=} H(g(X)) + H(X \mid g(X))$$

$$\stackrel{\text{(d)}}{\geq} H(g(X)).$$

Thus, $H(g(X)) \leq H(X)$.

2. Example of joint entropy. Let p(x, y) be given by

/	Y		
X		0	1
	0	$\frac{1}{3}$	$\frac{1}{3}$
	1	0	$\frac{1}{3}$

Find:

- (a) H(X), H(Y).
- **(b)** $H(X \mid Y), H(Y \mid X).$
- (c) H(X, Y).
- (d) $H(Y) H(Y \mid X)$.
- (e) I(X; Y).
- (f) Draw a Venn diagram for the quantities in parts (a) through (e).

3.

Discrete entropies. Let X and Y be two independent integer-valued random variables. Let X be uniformly distributed over $\{1, 2, \dots, 8\}$, and let $\Pr\{Y = k\} = 2^{-k}, k = 1, 2, 3, \dots$

- (a) Find H(X).
- **(b)** Find H(Y).
- (c) Find H(X + Y, X Y).